hidimstat.clustered_inference_pvalue#
- hidimstat.clustered_inference_pvalue(n_samples, group, ward, beta_hat, theta_hat, precision_diag, **kwargs)[source]#
Compute corrected p-values at the cluster level and transform them back to feature level.
- Parameters:
- n_samplesint
Number of samples in the dataset
- groupbool
If True, uses group lasso p-values for multivariate outcomes
- wardAgglomerativeClustering
Fitted clustering object
- beta_hatndarray
Estimated coefficients at cluster level
- theta_hatndarray
Estimated precision matrix
- precision_diagndarray
Diagonal elements of the covariance matrix
- **kwargsdict
Additional arguments passed to p-value computation functions
- Returns:
- beta_hatndarray
Degrouped coefficients at feature level
- pvalndarray
P-values for each feature
- pval_corrndarray
Multiple testing corrected p-values
- one_minus_pvalndarray
1 - p-values for numerical stability
- one_minus_pval_corrndarray
1 - corrected p-values