hidimstat.clustered_inference_pvalue#

hidimstat.clustered_inference_pvalue(n_samples, group, ward, beta_hat, theta_hat, precision_diag, **kwargs)[source]#

Compute corrected p-values at the cluster level and transform them back to feature level.

Parameters:
n_samplesint

Number of samples in the dataset

groupbool

If True, uses group lasso p-values for multivariate outcomes

wardAgglomerativeClustering

Fitted clustering object

beta_hatndarray

Estimated coefficients at cluster level

theta_hatndarray

Estimated precision matrix

precision_diagndarray

Diagonal elements of the covariance matrix

**kwargsdict

Additional arguments passed to p-value computation functions

Returns:
beta_hatndarray

Degrouped coefficients at feature level

pvalndarray

P-values for each feature

pval_corrndarray

Multiple testing corrected p-values

one_minus_pvalndarray

1 - p-values for numerical stability

one_minus_pval_corrndarray

1 - corrected p-values

Examples using hidimstat.clustered_inference_pvalue#

Support recovery on fMRI data

Support recovery on fMRI data

Support recovery on simulated data (2D)

Support recovery on simulated data (2D)