API#

Estimators#

Functions#

quantile_aggregation(pvals[, gamma, adaptive])

Implements the quantile aggregation method for p-values.

clustered_inference(X_init, y, ward, n_clusters)

Clustered inference algorithm for statistical analysis of high-dimensional data.

dcrt_zero(X, y[, estimated_coef, sigma_X, ...])

Implements distilled conditional randomization test (dCRT) without interactions.

dcrt_pvalue(selection_features, X_res, ...)

Calculate p-values and identify significant features using the dCRT test statistics.

desparsified_lasso(X, y[, dof_ajdustement, ...])

Desparsified Lasso

desparsified_lasso_pvalue(n_samples, ...[, ...])

Calculate confidence intervals and p-values for desparsified lasso estimators.

desparsified_group_lasso_pvalue(beta_hat, ...)

Compute p-values for the desparsified group Lasso estimator using chi-squared or F tests

ensemble_clustered_inference(X_init, y, ...)

Ensemble clustered inference algorithm for high-dimensional statistical inference, as described in [Chevalier et al., 2022].

ensemble_clustered_inference_pvalue(...[, ...])

Compute and aggregate p-values across multiple bootstrap iterations using an aggregation method.

reid(X, y[, epsilon, tolerance, ...])

Residual sum of squares based estimators for noise standard deviation estimation.

model_x_knockoff(X, y[, estimator, ...])

Model-X Knockoff

permutation_test(X, y, estimator[, ...])

Permutation test

reid(X, y[, epsilon, tolerance, ...])

Residual sum of squares based estimators for noise standard deviation estimation.

empirical_thresholding(X, y[, linear_estimator])

Perform empirical thresholding on the input data and target using a linear estimator.

Classes#

BasePerturbation(estimator, loss, ...)

LOCO(estimator, loss, method, n_jobs)

CPI(estimator, loss, method, n_jobs, ...[, ...])

PermutationImportance(estimator, loss, ...)