mne.decoding.UnsupervisedSpatialFilter#
- class mne.decoding.UnsupervisedSpatialFilter(estimator, average=False)[source]#
 Use unsupervised spatial filtering across time and samples.
- Parameters:
 - estimatorinstance of 
sklearn.base.BaseEstimator Estimator using some decomposition algorithm.
- averagebool, default 
False If True, the estimator is fitted on the average across samples (e.g. epochs).
- estimatorinstance of 
 
Methods
fit(X[, y])Fit the spatial filters.
fit_transform(X[, y])Transform the data to its filtered components after fitting.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
Inverse transform the data to its original space.
set_output(*[, transform])Set output container.
set_params(**params)Set the parameters of this estimator.
transform(X)Transform the data to its spatial filters.
- fit(X, y=None)[source]#
 Fit the spatial filters.
- Parameters:
 - Returns:
 - selfinstance of 
UnsupervisedSpatialFilter Return the modified instance.
- selfinstance of 
 
- get_metadata_routing()[source]#
 Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
 - routing
MetadataRequest A
MetadataRequestencapsulating routing information.
- routing
 
- set_output(*, transform=None)[source]#
 Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
 - transform{“default”, “pandas”, “polars”}, default=None
 Configure output of
transformandfit_transform.“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in v1.4: “polars” option was added.
- Returns:
 - self
estimatorinstance Estimator instance.
- self
 
Examples using mne.decoding.UnsupervisedSpatialFilter#
Analysis of evoked response using ICA and PCA reduction techniques