Source code for mne_connectivity.effective

# Authors: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

import copy

import numpy as np
from mne.utils import logger, verbose

from .base import SpectralConnectivity, SpectroTemporalConnectivity
from .spectral import spectral_connectivity_epochs
from .utils import fill_doc


[docs] @verbose @fill_doc def phase_slope_index( data, names=None, indices=None, sfreq=2 * np.pi, mode="multitaper", fmin=None, fmax=np.inf, tmin=None, tmax=None, mt_bandwidth=None, mt_adaptive=False, mt_low_bias=True, cwt_freqs=None, cwt_n_cycles=7, block_size=1000, n_jobs=1, verbose=None, ): """Compute the Phase Slope Index (PSI) connectivity measure. The PSI is an effective connectivity measure, i.e., a measure which can give an indication of the direction of the information flow (causality). For two time series, and one computes the PSI between the first and the second time series as follows indices = (np.array([0]), np.array([1])) psi = phase_slope_index(data, indices=indices, ...) A positive value means that time series 0 is ahead of time series 1 and a negative value means the opposite. The PSI is computed from the coherency (see :func:`spectral_connectivity_epochs`), details can be found in :footcite:`NolteEtAl2008`. Parameters ---------- data : array-like, shape=(n_epochs, n_signals, n_times) Can also be a list/generator of array, shape =(n_signals, n_times); list/generator of SourceEstimate; or Epochs. The data from which to compute connectivity. Note that it is also possible to combine multiple signals by providing a list of tuples, e.g., data = [(arr_0, stc_0), (arr_1, stc_1), (arr_2, stc_2)], corresponds to 3 epochs, and arr_* could be an array with the same number of time points as stc_*. %(names)s indices : tuple of array | None Two arrays with indices of connections for which to compute connectivity. If None, all connections are computed. sfreq : float The sampling frequency. mode : str Spectrum estimation mode can be either: 'multitaper', 'fourier', or 'cwt_morlet'. fmin : float | tuple of float The lower frequency of interest. Multiple bands are defined using a tuple, e.g., (8., 20.) for two bands with 8Hz and 20Hz lower freq. If None the frequency corresponding to an epoch length of 5 cycles is used. fmax : float | tuple of float The upper frequency of interest. Multiple bands are dedined using a tuple, e.g. (13., 30.) for two band with 13Hz and 30Hz upper freq. tmin : float | None Time to start connectivity estimation. tmax : float | None Time to end connectivity estimation. mt_bandwidth : float | None The bandwidth of the multitaper windowing function in Hz. Only used in 'multitaper' mode. mt_adaptive : bool Use adaptive weights to combine the tapered spectra into PSD. Only used in 'multitaper' mode. mt_low_bias : bool Only use tapers with more than 90 percent spectral concentration within bandwidth. Only used in 'multitaper' mode. cwt_freqs : array Array of frequencies of interest. Only used in 'cwt_morlet' mode. cwt_n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. Only used in 'cwt_morlet' mode. block_size : int How many connections to compute at once (higher numbers are faster but require more memory). n_jobs : int How many epochs to process in parallel. %(verbose)s Returns ------- conn : instance of SpectralConnectivity or SpectroTemporalConnectivity Computed connectivity measure(s). Either a :class:`SpectralConnectivity`, or :class:`SpectroTemporalConnectivity` container. The shape of each array is either (n_signals ** 2, n_bands) mode: 'multitaper' or 'fourier' (n_signals ** 2, n_bands, n_times) mode: 'cwt_morlet' when "indices" is None, or (n_con, n_bands) mode: 'multitaper' or 'fourier' (n_con, n_bands, n_times) mode: 'cwt_morlet' when "indices" is specified and "n_con = len(indices[0])". See Also -------- mne_connectivity.SpectralConnectivity mne_connectivity.SpectroTemporalConnectivity References ---------- .. footbibliography:: """ logger.info("Estimating phase slope index (PSI)") # estimate the coherency cohy = spectral_connectivity_epochs( data, names, method="cohy", indices=indices, sfreq=sfreq, mode=mode, fmin=fmin, fmax=fmax, fskip=0, faverage=False, tmin=tmin, tmax=tmax, mt_bandwidth=mt_bandwidth, mt_adaptive=mt_adaptive, mt_low_bias=mt_low_bias, cwt_freqs=cwt_freqs, cwt_n_cycles=cwt_n_cycles, block_size=block_size, n_jobs=n_jobs, verbose=verbose, ) # extract class properties from the spectral connectivity structure if isinstance(cohy, SpectroTemporalConnectivity): times = cohy.times else: times = None freqs_ = np.array(cohy.freqs) names = cohy.names n_tapers = cohy.attrs.get("n_tapers") n_epochs_used = cohy.n_epochs n_nodes = cohy.n_nodes metadata = cohy.metadata events = cohy.events event_id = cohy.event_id logger.info(f"Computing PSI from estimated Coherency: {cohy}") # compute PSI in the requested bands if fmin is None: fmin = -np.inf # set it to -inf, so we can adjust it later bands = list(zip(np.asarray((fmin,)).ravel(), np.asarray((fmax,)).ravel())) n_bands = len(bands) freq_dim = -2 if mode == "cwt_morlet" else -1 # allocate space for output out_shape = list(cohy.shape) out_shape[freq_dim] = n_bands psi = np.zeros(out_shape, dtype=np.float64) # allocate accumulator acc_shape = copy.copy(out_shape) acc_shape.pop(freq_dim) acc = np.empty(acc_shape, dtype=np.complex128) # create list for frequencies used and frequency bands # of resulting connectivity data freqs = list() freq_bands = list() idx_fi = [slice(None)] * len(out_shape) idx_fj = [slice(None)] * len(out_shape) for band_idx, band in enumerate(bands): freq_idx = np.where((freqs_ > band[0]) & (freqs_ < band[1]))[0] freqs.append(freqs_[freq_idx]) freq_bands.append(np.mean(freqs_[freq_idx])) acc.fill(0.0) for fi, fj in zip(freq_idx, freq_idx[1:]): idx_fi[freq_dim] = fi idx_fj[freq_dim] = fj acc += ( np.conj(cohy.get_data()[tuple(idx_fi)]) * cohy.get_data()[tuple(idx_fj)] ) idx_fi[freq_dim] = band_idx psi[tuple(idx_fi)] = np.imag(acc) logger.info("[PSI Estimation Done]") # create a connectivity container if mode in ["multitaper", "fourier"]: # spectral only conn = SpectralConnectivity( data=psi, names=names, freqs=freq_bands, n_nodes=n_nodes, method="phase-slope-index", spec_method=mode, indices=indices, freqs_computed=freqs, n_epochs_used=n_epochs_used, n_tapers=n_tapers, metadata=metadata, events=events, event_id=event_id, ) elif mode == "cwt_morlet": # spectrotemporal conn = SpectroTemporalConnectivity( data=psi, names=names, freqs=freq_bands, times=times, n_nodes=n_nodes, method="phase-slope-index", spec_method=mode, indices=indices, freqs_computed=freqs, n_epochs_used=n_epochs_used, n_tapers=n_tapers, metadata=metadata, events=events, event_id=event_id, ) return conn