# Authors: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
import copy
import numpy as np
from mne.utils import logger, verbose
from .base import SpectralConnectivity, SpectroTemporalConnectivity
from .spectral import spectral_connectivity_epochs
from .utils import fill_doc
[docs]
@verbose
@fill_doc
def phase_slope_index(
data,
names=None,
indices=None,
sfreq=2 * np.pi,
mode="multitaper",
fmin=None,
fmax=np.inf,
tmin=None,
tmax=None,
mt_bandwidth=None,
mt_adaptive=False,
mt_low_bias=True,
cwt_freqs=None,
cwt_n_cycles=7,
block_size=1000,
n_jobs=1,
verbose=None,
):
"""Compute the Phase Slope Index (PSI) connectivity measure.
The PSI is an effective connectivity measure, i.e., a measure which can
give an indication of the direction of the information flow (causality).
For two time series, and one computes the PSI between the first and the
second time series as follows
indices = (np.array([0]), np.array([1]))
psi = phase_slope_index(data, indices=indices, ...)
A positive value means that time series 0 is ahead of time series 1 and
a negative value means the opposite.
The PSI is computed from the coherency (see :func:`spectral_connectivity_epochs`),
details can be found in :footcite:`NolteEtAl2008`.
Parameters
----------
data : array-like, shape=(n_epochs, n_signals, n_times)
Can also be a list/generator of array, shape =(n_signals, n_times);
list/generator of SourceEstimate; or Epochs.
The data from which to compute connectivity. Note that it is also
possible to combine multiple signals by providing a list of tuples,
e.g., data = [(arr_0, stc_0), (arr_1, stc_1), (arr_2, stc_2)],
corresponds to 3 epochs, and arr_* could be an array with the same
number of time points as stc_*.
%(names)s
indices : tuple of array | None
Two arrays with indices of connections for which to compute
connectivity. If None, all connections are computed.
sfreq : float
The sampling frequency.
mode : str
Spectrum estimation mode can be either: 'multitaper', 'fourier', or
'cwt_morlet'.
fmin : float | tuple of float
The lower frequency of interest. Multiple bands are defined using
a tuple, e.g., (8., 20.) for two bands with 8Hz and 20Hz lower freq.
If None the frequency corresponding to an epoch length of 5 cycles
is used.
fmax : float | tuple of float
The upper frequency of interest. Multiple bands are dedined using
a tuple, e.g. (13., 30.) for two band with 13Hz and 30Hz upper freq.
tmin : float | None
Time to start connectivity estimation.
tmax : float | None
Time to end connectivity estimation.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'multitaper' mode.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
Only used in 'multitaper' mode.
mt_low_bias : bool
Only use tapers with more than 90 percent spectral concentration within
bandwidth. Only used in 'multitaper' mode.
cwt_freqs : array
Array of frequencies of interest. Only used in 'cwt_morlet' mode.
cwt_n_cycles : float | array of float
Number of cycles. Fixed number or one per frequency. Only used in
'cwt_morlet' mode.
block_size : int
How many connections to compute at once (higher numbers are faster
but require more memory).
n_jobs : int
How many epochs to process in parallel.
%(verbose)s
Returns
-------
conn : instance of SpectralConnectivity or SpectroTemporalConnectivity
Computed connectivity measure(s). Either a :class:`SpectralConnectivity`, or
:class:`SpectroTemporalConnectivity` container. The shape of each array is
either (n_signals ** 2, n_bands) mode: 'multitaper' or 'fourier' (n_signals **
2, n_bands, n_times) mode: 'cwt_morlet' when "indices" is None, or (n_con,
n_bands) mode: 'multitaper' or 'fourier' (n_con, n_bands, n_times) mode:
'cwt_morlet' when "indices" is specified and "n_con = len(indices[0])".
See Also
--------
mne_connectivity.SpectralConnectivity
mne_connectivity.SpectroTemporalConnectivity
References
----------
.. footbibliography::
"""
logger.info("Estimating phase slope index (PSI)")
# estimate the coherency
cohy = spectral_connectivity_epochs(
data,
names,
method="cohy",
indices=indices,
sfreq=sfreq,
mode=mode,
fmin=fmin,
fmax=fmax,
fskip=0,
faverage=False,
tmin=tmin,
tmax=tmax,
mt_bandwidth=mt_bandwidth,
mt_adaptive=mt_adaptive,
mt_low_bias=mt_low_bias,
cwt_freqs=cwt_freqs,
cwt_n_cycles=cwt_n_cycles,
block_size=block_size,
n_jobs=n_jobs,
verbose=verbose,
)
# extract class properties from the spectral connectivity structure
if isinstance(cohy, SpectroTemporalConnectivity):
times = cohy.times
else:
times = None
freqs_ = np.array(cohy.freqs)
names = cohy.names
n_tapers = cohy.attrs.get("n_tapers")
n_epochs_used = cohy.n_epochs
n_nodes = cohy.n_nodes
metadata = cohy.metadata
events = cohy.events
event_id = cohy.event_id
logger.info(f"Computing PSI from estimated Coherency: {cohy}")
# compute PSI in the requested bands
if fmin is None:
fmin = -np.inf # set it to -inf, so we can adjust it later
bands = list(zip(np.asarray((fmin,)).ravel(), np.asarray((fmax,)).ravel()))
n_bands = len(bands)
freq_dim = -2 if mode == "cwt_morlet" else -1
# allocate space for output
out_shape = list(cohy.shape)
out_shape[freq_dim] = n_bands
psi = np.zeros(out_shape, dtype=np.float64)
# allocate accumulator
acc_shape = copy.copy(out_shape)
acc_shape.pop(freq_dim)
acc = np.empty(acc_shape, dtype=np.complex128)
# create list for frequencies used and frequency bands
# of resulting connectivity data
freqs = list()
freq_bands = list()
idx_fi = [slice(None)] * len(out_shape)
idx_fj = [slice(None)] * len(out_shape)
for band_idx, band in enumerate(bands):
freq_idx = np.where((freqs_ > band[0]) & (freqs_ < band[1]))[0]
freqs.append(freqs_[freq_idx])
freq_bands.append(np.mean(freqs_[freq_idx]))
acc.fill(0.0)
for fi, fj in zip(freq_idx, freq_idx[1:]):
idx_fi[freq_dim] = fi
idx_fj[freq_dim] = fj
acc += (
np.conj(cohy.get_data()[tuple(idx_fi)]) * cohy.get_data()[tuple(idx_fj)]
)
idx_fi[freq_dim] = band_idx
psi[tuple(idx_fi)] = np.imag(acc)
logger.info("[PSI Estimation Done]")
# create a connectivity container
if mode in ["multitaper", "fourier"]:
# spectral only
conn = SpectralConnectivity(
data=psi,
names=names,
freqs=freq_bands,
n_nodes=n_nodes,
method="phase-slope-index",
spec_method=mode,
indices=indices,
freqs_computed=freqs,
n_epochs_used=n_epochs_used,
n_tapers=n_tapers,
metadata=metadata,
events=events,
event_id=event_id,
)
elif mode == "cwt_morlet":
# spectrotemporal
conn = SpectroTemporalConnectivity(
data=psi,
names=names,
freqs=freq_bands,
times=times,
n_nodes=n_nodes,
method="phase-slope-index",
spec_method=mode,
indices=indices,
freqs_computed=freqs,
n_epochs_used=n_epochs_used,
n_tapers=n_tapers,
metadata=metadata,
events=events,
event_id=event_id,
)
return conn