Source code for mne_connectivity.base

from copy import copy, deepcopy

import numpy as np
import pandas as pd
import xarray as xr
from mne.utils import (
    _check_combine,
    _check_event_id,
    _check_option,
    _ensure_events,
    _on_missing,
    _validate_type,
    check_random_state,
    copy_function_doc_to_method_doc,
    object_size,
    sizeof_fmt,
    warn,
)

from mne_connectivity.utils import _prepare_xarray_mne_data_structures, fill_doc
from mne_connectivity.viz import plot_connectivity_circle


class SpectralMixin:
    """Mixin class for spectral connectivities.

    Note: In mne-connectivity, we associate the word
    "spectral" with time-frequency. Reference to
    eigenvalue structure is not captured in this mixin.
    """

    @property
    def freqs(self):
        """The frequency points of the connectivity data.

        If these are computed over a frequency band, it will
        be the median frequency of the frequency band.
        """
        return self.xarray.coords.get("freqs").values.tolist()


class TimeMixin:
    @property
    def times(self):
        """The time points of the connectivity data."""
        return self.xarray.coords.get("times").values.tolist()


class EpochMixin:
    def _init_epochs(self, events, event_id, on_missing="warn") -> None:
        # Epochs should have the events array that informs user of
        # sample points at which each Epoch was taken from.
        # An empty list occurs when NetCDF stores empty arrays.
        if events is not None and np.array(events).size != 0:
            events = _ensure_events(events)
        else:
            events = np.empty((0, 3))

        event_id = _check_event_id(event_id, events)
        self.event_id = event_id
        self.events = events

        # see BaseEpochs init in MNE-Python
        if events is not None:
            for key, val in self.event_id.items():
                if val not in events[:, 2]:
                    msg = f"No matching events found for {key} (event id {val})"
                    _on_missing(on_missing, msg)

            # ensure metadata matches original events size
            self.selection = np.arange(len(events))
            self.events = events
            del events

            values = list(self.event_id.values())
            selected = np.where(np.isin(self.events[:, 2], values))[0]

            self.events = self.events[selected]

    def append(self, epoch_conn):
        """Append another connectivity structure.

        Parameters
        ----------
        epoch_conn : instance of Connectivity
            The Epoched Connectivity class to append.

        Returns
        -------
        self : instance of Connectivity
            The altered Epoched Connectivity class.
        """
        if not isinstance(self, type(epoch_conn)):
            raise ValueError(
                f"The type of the epoch connectivity to append is {type(epoch_conn)}, "
                f"which does not match {type(self)}."
            )
        if hasattr(self, "times"):
            if not np.allclose(self.times, epoch_conn.times):
                raise ValueError("Epochs must have same times")
        if hasattr(self, "freqs"):
            if not np.allclose(self.freqs, epoch_conn.freqs):
                raise ValueError("Epochs must have same frequencies")

        events = list(deepcopy(self.events))
        event_id = deepcopy(self.event_id)
        metadata = copy(self.metadata)

        # compare event_id
        common_keys = list(set(event_id).intersection(set(epoch_conn.event_id)))
        for key in common_keys:
            if not event_id[key] == epoch_conn.event_id[key]:
                msg = (
                    "event_id values must be the same for identical keys "
                    'for all concatenated epochs. Key "{}" maps to {} in '
                    "some epochs and to {} in others."
                )
                raise ValueError(
                    msg.format(key, event_id[key], epoch_conn.event_id[key])
                )

        evs = epoch_conn.events.copy()
        if epoch_conn.n_epochs == 0:
            warn("Epoch Connectivity object to append was empty.")
        event_id.update(epoch_conn.event_id)
        events = np.concatenate((events, evs), axis=0)
        metadata = pd.concat([epoch_conn.metadata, metadata])

        # now combine the xarray data, altered events and event ID
        self._obj = xr.concat([self.xarray, epoch_conn.xarray], dim="epochs")
        self.events = events
        self.event_id = event_id
        return self

    def combine(self, combine="mean"):
        """Combine connectivity data over epochs.

        Parameters
        ----------
        combine : 'mean' | 'median' | callable
            How to combine correlation estimates across epochs.
            Default is 'mean'. If callable, it must accept one
            positional input. For example::

                combine = lambda data: np.median(data, axis=0)

        Returns
        -------
        conn : instance of Connectivity
            The combined connectivity data structure.
        """
        from .io import _xarray_to_conn

        if not self.is_epoched:
            raise RuntimeError(
                "Combine only works over Epoched connectivity. It does not work with "
                f"{self}"
            )

        fun = _check_combine(combine, valid=("mean", "median"))

        # get a copy of metadata into attrs as a dictionary
        self = _prepare_xarray_mne_data_structures(self)

        # apply function over the  array
        new_xr = xr.apply_ufunc(
            fun, self.xarray, input_core_dims=[["epochs"]], vectorize=True
        )
        new_xr.attrs = self.xarray.attrs

        # map class name to its actual class
        conn_cls = {
            "EpochConnectivity": Connectivity,
            "EpochTemporalConnectivity": TemporalConnectivity,
            "EpochSpectralConnectivity": SpectralConnectivity,
            "EpochSpectroTemporalConnectivity": SpectroTemporalConnectivity,
        }
        cls_func = conn_cls[self.__class__.__name__]

        # convert new xarray to non-Epoch data structure
        conn = _xarray_to_conn(new_xr, cls_func)
        return conn


class DynamicMixin:
    def is_stable(self):
        companion_mat = self.companion
        return np.abs(np.linalg.eigvals(companion_mat)).max() < 1.0

    def eigvals(self):
        return np.linalg.eigvals(self.companion)

    @property
    def companion(self):
        """Generate block companion matrix.

        Returns the data matrix if the model is VAR(1).
        """
        from .vector_ar.utils import _block_companion

        lags = self.attrs.get("lags")
        data = self.get_data()
        if lags == 1:
            return data

        arrs = []
        for idx in range(self.n_epochs):
            blocks = _block_companion([data[idx, ..., jdx] for jdx in range(lags)])
            arrs.append(blocks)
        return arrs

    def predict(self, data):
        """Predict samples on actual data.

        The result of this function is used for calculating the residuals.

        Parameters
        ----------
        data : array
            Epoched or continuous data set. Has shape
            (n_epochs, n_signals, n_times) or (n_signals, n_times).

        Returns
        -------
        predicted : array
            Data as predicted by the VAR model of
            shape same as ``data``.

        Notes
        -----
        Residuals are obtained by r = x - var.predict(x).

        To compute residual covariances::

            # compute the covariance of the residuals
            # row are observations, columns are variables
            t = residuals.shape[0]
            sampled_residuals = np.concatenate(
                np.split(residuals[:, :, lags:], t, 0),
                axis=2
            ).squeeze(0)
            rescov = np.cov(sampled_residuals)
        """
        if data.ndim < 2 or data.ndim > 3:
            raise ValueError(
                "Data passed in must be either 2D or 3D. The data you passed in has "
                f"{data.ndim} dims."
            )
        if data.ndim == 2 and self.is_epoched:
            raise RuntimeError(
                "If there is a VAR model over epochs, one must pass in a 3D array."
            )
        if data.ndim == 3 and not self.is_epoched:
            raise RuntimeError(
                "If there is a single VAR model, one must pass in a 2D array."
            )

        # make the data 3D
        if data.ndim == 2:
            data = data[np.newaxis, ...]

        n_epochs, _, n_times = data.shape
        var_model = self.get_data(output="dense")

        # get the model order
        lags = self.attrs.get("lags")

        # predict the data by applying forward model
        predicted_data = np.zeros(data.shape)
        # which takes less loop iterations
        if n_epochs > n_times - lags:
            for idx in range(1, lags + 1):
                for jdx in range(lags, n_times):
                    if self.is_epoched:
                        bp = var_model[jdx, :, (idx - 1) :: lags]
                    else:
                        bp = var_model[:, (idx - 1) :: lags]
                    predicted_data[:, :, jdx] += np.dot(data[:, :, jdx - idx], bp.T)
        else:
            for idx in range(1, lags + 1):
                for jdx in range(n_epochs):
                    if self.is_epoched:
                        bp = var_model[jdx, :, (idx - 1) :: lags]
                    else:
                        bp = var_model[:, (idx - 1) :: lags]
                    predicted_data[jdx, :, lags:] += np.dot(
                        bp, data[jdx, :, (lags - idx) : (n_times - idx)]
                    )

        return predicted_data

    @fill_doc
    def simulate(self, n_samples, noise_func=None, random_state=None):
        """Simulate vector autoregressive (VAR) model.

        This function generates data from the VAR model.

        Parameters
        ----------
        n_samples : int
            Number of samples to generate.
        noise_func : func, optional
            This function is used to create the generating noise process. If
            set to None, Gaussian white noise with zero mean and unit variance
            is used.
        %(random_state)s

        Returns
        -------
        data : array, shape (n_samples, n_channels)
            Generated data.
        """
        var_model = self.get_data(output="dense")
        if self.is_epoched:
            var_model = var_model.mean(axis=0)

        n_nodes = self.n_nodes
        lags = self.attrs.get("lags")

        # set noise function
        if noise_func is None:
            rng = check_random_state(random_state)

            def noise_func():
                return rng.normal(size=(1, n_nodes))

        n = n_samples + 10 * lags

        # simulated data
        data = np.zeros((n, n_nodes))
        res = np.zeros((n, n_nodes))

        for jdx in range(lags):
            e = noise_func()
            res[jdx, :] = e
            data[jdx, :] = e
        for jdx in range(lags, n):
            e = noise_func()
            res[jdx, :] = e
            data[jdx, :] = e
            for idx in range(1, lags + 1):
                data[jdx, :] += var_model[:, (idx - 1) :: lags].dot(data[jdx - idx, :])

        # self.residuals = res[10 * lags:, :, :].T
        # self.rescov = sp.cov(cat_trials(self.residuals).T, rowvar=False)
        return data[10 * lags :, :].transpose()


@fill_doc
class BaseConnectivity(DynamicMixin, EpochMixin):
    """Base class for connectivity data.

    This class should not be instantiated directly, but should be used
    to do type-checking. All connectivity classes will be returned from
    corresponding connectivity computing functions.

    Connectivity data is anything that represents "connections"
    between nodes as a (N, N) array. It can be symmetric, or
    asymmetric (if it is symmetric, storage optimization will
    occur).

    Parameters
    ----------
    %(data)s
    %(names)s
    %(indices)s
    %(method)s
    %(n_nodes)s
    %(events)s
    %(event_id)s
    metadata : instance of pandas.DataFrame | None
        The metadata data frame that would come from the :class:`mne.Epochs`
        class. See :class:`mne.Epochs` docstring for details.
    %(connectivity_kwargs)s

    Notes
    -----
    Connectivity data can be generally represented as a square matrix
    with values intending the connectivity function value between two
    nodes. We optimize storage of symmetric connectivity data
    and allow support for computing connectivity data on a subset of nodes.
    We store connectivity data as a raveled ``(n_estimated_nodes, ...)``
    where ``n_estimated_nodes`` can be ``n_nodes_in * n_nodes_out`` if a
    full connectivity structure is computed, or a subset of the nodes
    (equal to the length of the indices passed in).

    Since we store connectivity data as a raveled array, one can
    easily optimize the storage of "symmetric" connectivity data.
    One can use numpy to convert a full all-to-all connectivity
    into an upper triangular portion, and set ``indices='symmetric'``.
    This would reduce the RAM needed in half.

    The underlying data structure is an ``xarray.DataArray``,
    with a similar API to ``xarray``. We provide support for storing
    connectivity data in a subset of nodes. Thus the underlying
    data structure instead of a ``(n_nodes_in, n_nodes_out)`` 2D array
    would be a ``(n_nodes_in * n_nodes_out,)`` raveled 1D array. This
    allows us to optimize storage also for symmetric connectivity.
    """

    # whether or not the connectivity occurs over epochs
    is_epoched = False

    def __init__(
        self,
        data,
        names,
        indices,
        method,
        n_nodes,
        events=None,
        event_id=None,
        metadata=None,
        **kwargs,
    ):
        if isinstance(indices, str) and indices not in ["all", "symmetric"]:
            raise ValueError(
                'Indices can only be "all", "symmetric", or a list of tuples. '
                f"It cannot be {indices}."
            )

        # prepare metadata pandas dataframe and ensure metadata is a Pandas
        # DataFrame object
        if metadata is None:
            metadata = pd.DataFrame(dtype="float64")
        self.metadata = metadata

        # check the incoming data structure
        self._check_data_consistency(data, indices=indices, n_nodes=n_nodes)
        self._prepare_xarray(
            data,
            names=names,
            indices=indices,
            n_nodes=n_nodes,
            method=method,
            events=events,
            event_id=event_id,
            **kwargs,
        )

    def __repr__(self) -> str:
        r = f"<{self.__class__.__name__} | "

        if self.n_epochs is not None:
            r += f"n_epochs : {self.n_epochs}, "
        if "freqs" in self.dims:
            r += f"freq : [{self.freqs[0]}, {self.freqs[-1]}], "  # type: ignore
        if "times" in self.dims:
            r += f"time : [{self.times[0]}, {self.times[-1]}], "  # type: ignore
        r += f", nave : {self.n_epochs_used}"
        r += f", nodes, n_estimated : {self.n_nodes}, {self.n_estimated_nodes}"
        if "components" in self.dims:
            r += f", n_components : {len(self.coords['components'])}, "
        r += f", ~{sizeof_fmt(self._size)}"
        r += ">"
        return r

    def _get_num_connections(self, data):
        """Compute the number of estimated nodes' connectivity."""
        # account for epoch data structures
        if self.is_epoched:
            start_idx = 1
        else:
            start_idx = 0
        self.n_estimated_nodes = data.shape[start_idx]

    def _prepare_xarray(
        self, data, names, indices, n_nodes, method, events, event_id, **kwargs
    ):
        """Prepare xarray data structure."""
        # generate events and event_id that originate from Epochs class
        # which stores the windows of Raw that were used to generate
        # the corresponding connectivity data
        self._init_epochs(events, event_id, on_missing="warn")

        # set node names
        if names is None:
            names = list(map(str, range(n_nodes)))

        # the names of each first few dimensions of
        # the data depending if data is epoched or not
        if self.is_epoched:
            dims = ["epochs", "node_in -> node_out"]
        else:
            dims = ["node_in -> node_out"]

        # the coordinates of each dimension
        n_estimated_list = list(map(str, range(self.n_estimated_nodes)))
        coords = dict()
        if self.is_epoched:
            coords["epochs"] = list(map(str, range(data.shape[0])))
        coords["node_in -> node_out"] = n_estimated_list
        if "components" in kwargs:
            coords["components"] = kwargs.pop("components")
            dims.append("components")
        if "freqs" in kwargs:
            coords["freqs"] = kwargs.pop("freqs")
            dims.append("freqs")
        if "times" in kwargs:
            times = kwargs.pop("times")
            if times is None:
                times = list(range(data.shape[-1]))
            coords["times"] = list(times)
            dims.append("times")

        # convert all numpy arrays to lists
        for key, val in kwargs.items():
            if isinstance(val, np.ndarray):
                kwargs[key] = val.tolist()
        kwargs["node_names"] = names

        # set method, indices and n_nodes
        if isinstance(indices, tuple):
            if all(isinstance(inds, np.ndarray) for inds in indices):
                # leave multivariate indices as arrays for easier indexing
                if all(inds.ndim > 1 for inds in indices):
                    new_indices = (indices[0], indices[1])
                else:
                    new_indices = (list(indices[0]), list(indices[1]))
            else:
                new_indices = (list(indices[0]), list(indices[1]))
            indices = new_indices
        kwargs["method"] = method
        kwargs["indices"] = indices
        kwargs["n_nodes"] = n_nodes
        kwargs["events"] = self.events
        # kwargs['event_id'] = self.event_id

        # create xarray object
        xarray_obj = xr.DataArray(data=data, coords=coords, dims=dims, attrs=kwargs)
        self._obj = xarray_obj

    def _check_data_consistency(self, data, indices, n_nodes):
        """Perform data input checks."""
        if not isinstance(data, np.ndarray):
            raise TypeError("Connectivity data must be passed in as a numpy array.")

        if self.is_epoched:
            if data.ndim < 2 or data.ndim > 5:
                raise RuntimeError(
                    "Data using an epoched data structure should have at least 2 "
                    f"dimensions and at most 5 dimensions. Your data was {data.shape} "
                    "shape."
                )
        else:
            if data.ndim > 4:
                raise RuntimeError(
                    "Data not using an epoched data structure should have at least 1 "
                    f"dimensions and at most 4 dimensions. Your data was {data.shape} "
                    "shape."
                )

        # get the number of estimated nodes
        self._get_num_connections(data)
        if self.is_epoched:
            data_len = data.shape[1]
        else:
            data_len = data.shape[0]

        if isinstance(indices, tuple):
            # check that the indices passed in are of the same length
            if len(indices[0]) != len(indices[1]):
                raise ValueError(
                    "If indices are passed in then they must be the same length. They "
                    f"are right now {len(indices[0])} and {len(indices[1])}."
                )
            # indices length should match the data length
            if len(indices[0]) != data_len:
                raise ValueError(
                    f"The number of indices, {len(indices[0])} should match the "
                    f"raveled data length passed in of {data_len}."
                )

        elif indices == "symmetric":
            expected_len = ((n_nodes + 1) * n_nodes) // 2
            if data_len != expected_len:
                raise ValueError(
                    'If "indices" is "symmetric", then '
                    f"connectivity data should be the upper-triangular part of the "
                    f"matrix. There are {data_len} estimated connections. But there "
                    f"should be {expected_len} estimated connections."
                )

    def copy(self):
        return deepcopy(self)

    def get_epoch_annotations(self):
        pass

    @property
    def n_epochs(self):
        """The number of epochs the connectivity data varies over."""
        if self.is_epoched:
            n_epochs = self._data.shape[0]
        else:
            n_epochs = None
        return n_epochs

    @property
    def _data(self):
        """Numpy array of connectivity data."""
        return self.xarray.values

    @property
    def dims(self):
        """The dimensions of the xarray data."""
        return self.xarray.dims

    @property
    def coords(self):
        """The coordinates of the xarray data."""
        return self.xarray.coords

    @property
    def attrs(self):
        """Xarray attributes of connectivity.

        See ``xarray``'s ``attrs``.
        """
        return self.xarray.attrs

    @property
    def shape(self):
        """Shape of raveled connectivity."""
        return self.xarray.shape

    @property
    def n_nodes(self):
        """The number of nodes in the original dataset.

        Even if ``indices`` defines a subset of nodes that
        were computed, this should be the total number of
        nodes in the original dataset.
        """
        return self.attrs["n_nodes"]

    @property
    def method(self):
        """The method used to compute connectivity."""
        return self.attrs["method"]

    @property
    def indices(self):
        """Indices of connectivity data.

        Returns
        -------
        indices : str | tuple of lists
            Either 'all' for all-to-all connectivity,
            'symmetric' for symmetric all-to-all connectivity,
            or a tuple of lists representing the node-to-nodes
            that connectivity was computed.
        """
        return self.attrs["indices"]

    @property
    def names(self):
        """Node names."""
        return self.attrs["node_names"]

    @property
    def xarray(self):
        """Xarray of the connectivity data."""
        return self._obj

    @property
    def n_epochs_used(self):
        """Number of epochs used in computation of connectivity.

        Can be 'None', if there was no epochs used. This is
        equivalent to the number of epochs, if there is no
        combining of epochs.
        """
        return self.attrs.get("n_epochs_used")

    @property
    def _size(self):
        """Estimate the object size."""
        size = 0
        size += object_size(self._data)
        size += object_size(self.attrs)

        # if self.metadata is not None:
        #     size += self.metadata.memory_usage(index=True).sum()
        return size

    def get_data(self, output="compact"):
        """Get connectivity data as a numpy array.

        Parameters
        ----------
        output : str, optional
            How to format the output, by default 'raveled', which
            will represent each connectivity matrix as a
            ``(n_nodes_in * n_nodes_out,)`` list. If 'dense', then
            will return each connectivity matrix as a 2D array. If 'compact'
            (default) then will return 'raveled' if ``indices`` were defined as
            a list of tuples, or ``dense`` if indices is 'all'. Multivariate
            connectivity data cannot be returned in a dense form.

        Returns
        -------
        data : np.ndarray
            The output connectivity data.
        """
        _check_option("output", output, ["raveled", "dense", "compact"])

        if output == "compact":
            if self.indices in ["all", "symmetric"]:
                output = "dense"
            else:
                output = "raveled"

        if output == "raveled":
            data = self._data
        else:
            if (
                isinstance(self.indices, tuple)
                and not isinstance(self.indices[0], int)
                and not isinstance(self.indices[1], int)
            ):  # i.e. check if multivariate results based on nested indices
                # multivariate results cannot be returned in a dense form as a single
                # set of results would correspond to multiple entries in the matrix, and
                # there could also be cases where multiple results correspond to the
                # same entries in the matrix.
                raise ValueError(
                    "cannot return multivariate connectivity data in a dense form"
                )

            # get the new shape of the data array
            if self.is_epoched:
                new_shape = [self.n_epochs]
            else:
                new_shape = []

            # handle the case where model order is defined in VAR connectivity
            # and thus appends the connectivity matrices side by side, so the
            # shape is N x N * lags
            new_shape.extend([self.n_nodes, self.n_nodes])
            if "components" in self.dims:
                new_shape.append(len(self.coords["components"]))
            if "freqs" in self.dims:
                new_shape.append(len(self.coords["freqs"]))
            if "times" in self.dims:
                new_shape.append(len(self.coords["times"]))

            # handle things differently if indices is defined
            if isinstance(self.indices, tuple):
                # TODO: improve this to be more memory efficient
                # from all-to-all connectivity structure
                data = np.zeros(new_shape)
                data[:] = np.nan

                row_idx, col_idx = self.indices
                if self.is_epoched:
                    data[:, row_idx, col_idx, ...] = self._data
                else:
                    data[row_idx, col_idx, ...] = self._data
            elif self.indices == "symmetric":
                data = np.zeros(new_shape)

                # get the upper/lower triangular indices
                row_triu_inds, col_triu_inds = np.triu_indices(self.n_nodes, k=0)
                if self.is_epoched:
                    data[:, row_triu_inds, col_triu_inds, ...] = self._data
                    data[:, col_triu_inds, row_triu_inds, ...] = self._data
                else:
                    data[row_triu_inds, col_triu_inds, ...] = self._data
                    data[col_triu_inds, row_triu_inds, ...] = self._data
            else:
                data = self._data.reshape(new_shape)

        return data

    def rename_nodes(self, mapping):
        """Rename nodes.

        Parameters
        ----------
        mapping : dict
            Mapping from original node names (keys) to new node names (values).
        """
        names = copy(self.names)

        # first check and assemble clean mappings of index and name
        if isinstance(mapping, dict):
            orig_names = sorted(list(mapping.keys()))
            missing = [orig_name not in names for orig_name in orig_names]
            if any(missing):
                raise ValueError(
                    "Name(s) in mapping missing from info: "
                    f"{np.array(orig_names)[np.array(missing)]}"
                )
            new_names = [
                (names.index(name), new_name) for name, new_name in mapping.items()
            ]
        elif callable(mapping):
            new_names = [(ci, mapping(name)) for ci, name in enumerate(names)]
        else:
            raise ValueError(f"mapping must be callable or dict, not {type(mapping)}")

        # check we got all strings out of the mapping
        for new_name in new_names:
            _validate_type(new_name[1], "str", "New name mappings")

        # do the remapping locally
        for c_ind, new_name in new_names:
            names[c_ind] = new_name

        # check that all the channel names are unique
        if len(names) != len(np.unique(names)):
            raise ValueError("New channel names are not unique, renaming failed")

        # rename the new names
        self._obj.attrs["node_names"] = names

    @copy_function_doc_to_method_doc(plot_connectivity_circle)
    def plot_circle(self, **kwargs):
        plot_connectivity_circle(
            self.get_data(), node_names=self.names, indices=self.indices, **kwargs
        )

    # def plot_matrix(self):
    #     pass

    # def plot_3d(self):
    #     pass

    def save(self, fname):
        """Save connectivity data to disk.

        Can later be loaded using the function
        :func:`mne_connectivity.read_connectivity`.

        Parameters
        ----------
        fname : str | pathlib.Path
            The filepath to save the data. Data is saved
            as netCDF files (``.nc`` extension).
        """
        method = self.method
        indices = self.indices
        n_nodes = self.n_nodes

        # create a copy of the old attributes
        old_attrs = copy(self.attrs)

        # assign these to xarray's attrs
        self.attrs["method"] = method
        self.attrs["indices"] = indices
        self.attrs["n_nodes"] = n_nodes

        # save the name of the connectivity structure
        self.attrs["data_structure"] = str(self.__class__.__name__)

        # get a copy of metadata into attrs as a dictionary
        self = _prepare_xarray_mne_data_structures(self)

        # netCDF does not support 'None'
        # so map these to 'n/a'
        for key, val in self.attrs.items():
            if val is None:
                self.attrs[key] = "n/a"

        # save as a netCDF file
        # note this requires the netcdf4 python library
        # and h5netcdf library.
        # The engine specified requires the ability to save
        # complex data types, which was not natively supported
        # in xarray. Therefore, h5netcdf is the only engine
        # to support that feature at this moment.
        self.xarray.to_netcdf(
            fname, mode="w", format="NETCDF4", engine="h5netcdf", invalid_netcdf=True
        )

        # re-set old attributes
        self.xarray.attrs = old_attrs


[docs] @fill_doc class SpectralConnectivity(BaseConnectivity, SpectralMixin): """Spectral connectivity class. This class stores connectivity data that varies over frequencies. The underlying data is an array of shape (n_connections, [n_components], n_freqs), or (n_nodes, n_nodes, [n_components], n_freqs). ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(freqs)s %(n_nodes)s %(names)s %(indices)s %(method)s %(spec_method)s %(n_epochs_used)s %(connectivity_kwargs)s See Also -------- mne_connectivity.phase_slope_index mne_connectivity.spectral_connectivity_epochs mne_connectivity.spectral_connectivity_time """ expected_n_dim = 2 def __init__( self, data, freqs, n_nodes, names=None, indices="all", method=None, spec_method=None, n_epochs_used=None, **kwargs, ): super().__init__( data, names=names, method=method, indices=indices, n_nodes=n_nodes, freqs=freqs, spec_method=spec_method, n_epochs_used=n_epochs_used, **kwargs, )
[docs] @fill_doc class TemporalConnectivity(BaseConnectivity, TimeMixin): """Temporal connectivity class. This is an array of shape (n_connections, [n_components], n_times), or (n_nodes, n_nodes, [n_components], n_times). This describes how connectivity varies over time. It describes sample-by-sample time-varying connectivity (usually on the order of milliseconds). Here time (t=0) is the same for all connectivity measures. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(times)s %(n_nodes)s %(names)s %(indices)s %(method)s %(n_epochs_used)s %(connectivity_kwargs)s Notes ----- `mne_connectivity.EpochConnectivity` is a similar connectivity class to this one. However, that describes one connectivity snapshot for each epoch. These epochs might be chunks of time that have different meaning for time ``t=0``. Epochs can mean separate trials, where the beginning of the trial implies t=0. These Epochs may also be discontiguous. """ expected_n_dim = 2 def __init__( self, data, times, n_nodes, names=None, indices="all", method=None, n_epochs_used=None, **kwargs, ): super().__init__( data, names=names, method=method, n_nodes=n_nodes, indices=indices, times=times, n_epochs_used=n_epochs_used, **kwargs, )
[docs] @fill_doc class SpectroTemporalConnectivity(BaseConnectivity, SpectralMixin, TimeMixin): """Spectrotemporal connectivity class. This class stores connectivity data that varies over both frequency and time. The temporal part describes sample-by-sample time-varying connectivity (usually on the order of milliseconds). Note the difference relative to Epochs. The underlying data is an array of shape (n_connections, [n_components], n_freqs, n_times), or (n_nodes, n_nodes, [n_components], n_freqs, n_times). ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(freqs)s %(times)s %(n_nodes)s %(names)s %(indices)s %(method)s %(spec_method)s %(n_epochs_used)s %(connectivity_kwargs)s See Also -------- mne_connectivity.phase_slope_index mne_connectivity.spectral_connectivity_epochs """ def __init__( self, data, freqs, times, n_nodes, names=None, indices="all", method=None, spec_method=None, n_epochs_used=None, **kwargs, ): super().__init__( data, names=names, method=method, indices=indices, n_nodes=n_nodes, freqs=freqs, spec_method=spec_method, times=times, n_epochs_used=n_epochs_used, **kwargs, )
[docs] @fill_doc class EpochSpectralConnectivity(SpectralConnectivity): """Spectral connectivity class over Epochs. This is an array of shape (n_epochs, n_connections, [n_components], n_freqs), or (n_epochs, n_nodes, n_nodes, [n_components], n_freqs). This describes how connectivity varies over frequencies for different epochs. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(freqs)s %(n_nodes)s %(names)s %(indices)s %(method)s %(spec_method)s %(connectivity_kwargs)s See Also -------- mne_connectivity.spectral_connectivity_time """ # whether or not the connectivity occurs over epochs is_epoched = True def __init__( self, data, freqs, n_nodes, names=None, indices="all", method=None, spec_method=None, **kwargs, ): super().__init__( data, freqs=freqs, names=names, indices=indices, n_nodes=n_nodes, method=method, spec_method=spec_method, **kwargs, )
[docs] @fill_doc class EpochTemporalConnectivity(TemporalConnectivity): """Temporal connectivity class over Epochs. This is an array of shape (n_epochs, n_connections, [n_components], n_times), or (n_epochs, n_nodes, n_nodes, [n_components], n_times). This describes how connectivity varies over time for different epochs. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(times)s %(n_nodes)s %(names)s %(indices)s %(method)s %(connectivity_kwargs)s See Also -------- mne_connectivity.envelope_correlation mne_connectivity.vector_auto_regression """ # whether or not the connectivity occurs over epochs is_epoched = True def __init__( self, data, times, n_nodes, names=None, indices="all", method=None, **kwargs ): super().__init__( data, times=times, names=names, indices=indices, n_nodes=n_nodes, method=method, **kwargs, )
[docs] @fill_doc class EpochSpectroTemporalConnectivity(SpectroTemporalConnectivity): """Spectrotemporal connectivity class over Epochs. This is an array of shape (n_epochs, n_connections, [n_components], n_freqs, n_times), or (n_epochs, n_nodes, n_nodes, [n_components], n_freqs, n_times). This describes how connectivity varies over frequencies and time for different epochs. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(freqs)s %(times)s %(n_nodes)s %(names)s %(indices)s %(method)s %(spec_method)s %(connectivity_kwargs)s """ # whether or not the connectivity occurs over epochs is_epoched = True def __init__( self, data, freqs, times, n_nodes, names=None, indices="all", method=None, spec_method=None, **kwargs, ): super().__init__( data, names=names, freqs=freqs, times=times, indices=indices, n_nodes=n_nodes, method=method, spec_method=spec_method, **kwargs, )
[docs] @fill_doc class Connectivity(BaseConnectivity): """Connectivity class without frequency or time component. This is an array of shape (n_connections, [n_components]), or (n_nodes, n_nodes, [n_components]). This describes a connectivity matrix/graph that does not vary over time, frequency, or epochs. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(n_nodes)s %(names)s %(indices)s %(method)s %(n_epochs_used)s %(connectivity_kwargs)s See Also -------- mne_connectivity.vector_auto_regression """ def __init__( self, data, n_nodes, names=None, indices="all", method=None, n_epochs_used=None, **kwargs, ): super().__init__( data, names=names, method=method, n_nodes=n_nodes, indices=indices, n_epochs_used=n_epochs_used, **kwargs, )
[docs] @fill_doc class EpochConnectivity(BaseConnectivity): """Epoch connectivity class. This is an array of shape (n_epochs, n_connections, [n_components]), or (n_epochs, n_nodes, n_nodes, [n_components]). This describes how connectivity varies for different epochs. ``n_components`` is an optional dimension for multivariate methods where each connection has multiple components of connectivity. Parameters ---------- %(data)s %(n_nodes)s %(names)s %(indices)s %(method)s %(n_epochs_used)s %(connectivity_kwargs)s See Also -------- mne_connectivity.vector_auto_regression """ # whether or not the connectivity occurs over epochs is_epoched = True def __init__( self, data, n_nodes, names=None, indices="all", method=None, n_epochs_used=None, **kwargs, ): super().__init__( data, names=names, method=method, n_nodes=n_nodes, indices=indices, n_epochs_used=n_epochs_used, **kwargs, )