Head model and forward computation#

The aim of this tutorial is to be a getting started for forward computation.

For more extensive details and presentation of the general concepts for forward modeling, see The forward solution.

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import mne
from mne.datasets import sample

data_path = sample.data_path()

# the raw file containing the channel location + types
sample_dir = data_path / "MEG" / "sample"
raw_fname = sample_dir / "sample_audvis_raw.fif"
# The paths to Freesurfer reconstructions
subjects_dir = data_path / "subjects"
subject = "sample"

Computing the forward operator#

To compute a forward operator we need:

  • a -trans.fif file that contains the coregistration info.

  • a source space

  • the BEM surfaces

Compute and visualize BEM surfaces#

The BEM surfaces are the triangulations of the interfaces between different tissues needed for forward computation. These surfaces are for example the inner skull surface, the outer skull surface and the outer skin surface, a.k.a. scalp surface.

Computing the BEM surfaces requires FreeSurfer and makes use of the command-line tools mne watershed_bem or mne flash_bem, or the related functions mne.bem.make_watershed_bem() or mne.bem.make_flash_bem().

Here we’ll assume it’s already computed. It takes a few minutes per subject.

For EEG we use 3 layers (inner skull, outer skull, and skin) while for MEG 1 layer (inner skull) is enough.

Let’s look at these surfaces. The function mne.viz.plot_bem() assumes that you have the bem folder of your subject’s FreeSurfer reconstruction, containing the necessary surface files. Here we use a smaller than default subset of slices for speed.

plot_bem_kwargs = dict(
    subject=subject,
    subjects_dir=subjects_dir,
    brain_surfaces="white",
    orientation="coronal",
    slices=[50, 100, 150, 200],
)

mne.viz.plot_bem(**plot_bem_kwargs)

Visualizing the coregistration#

The coregistration is the operation that allows to position the head and the sensors in a common coordinate system. In the MNE software the transformation to align the head and the sensors in stored in a so-called trans file. It is a FIF file that ends with -trans.fif. It can be obtained with mne.gui.coregistration() (or its convenient command line equivalent mne coreg), or mrilab if you’re using a Neuromag system.

Here we assume the coregistration is done, so we just visually check the alignment with the following code. See Defining the head↔MRI trans using the GUI for instructions on creating the -trans.fif file interactively.

# The transformation file obtained by coregistration
trans = sample_dir / "sample_audvis_raw-trans.fif"

info = mne.io.read_info(raw_fname)
# Here we look at the dense head, which isn't used for BEM computations but
# is useful for coregistration.
mne.viz.plot_alignment(
    info,
    trans,
    subject=subject,
    dig=True,
    meg=["helmet", "sensors"],
    subjects_dir=subjects_dir,
    surfaces="head-dense",
)

Compute Source Space#

The source space defines the position and orientation of the candidate source locations. There are two types of source spaces:

  • surface-based source space when the candidates are confined to a surface.

  • volumetric or discrete source space when the candidates are discrete, arbitrarily located source points bounded by the surface.

Surface-based source space is computed using mne.setup_source_space(), while volumetric source space is computed using mne.setup_volume_source_space().

We will now compute a surface-based source space with an 'oct4' resolution. See Setting up the source space for details on source space definition and spacing parameter.

Warning

'oct4' is used here just for speed, for real analyses the recommended spacing is 'oct6'.

src = mne.setup_source_space(
    subject, spacing="oct4", add_dist="patch", subjects_dir=subjects_dir
)
print(src)

The surface based source space src contains two parts, one for the left hemisphere (258 locations) and one for the right hemisphere (258 locations). Sources can be visualized on top of the BEM surfaces in purple.

mne.viz.plot_bem(src=src, **plot_bem_kwargs)

To compute a volume based source space defined with a grid of candidate dipoles inside a sphere of radius 90mm centered at (0.0, 0.0, 40.0) mm you can use the following code. Obviously here, the sphere is not perfect. It is not restricted to the brain and it can miss some parts of the cortex.

sphere = (0.0, 0.0, 0.04, 0.09)
vol_src = mne.setup_volume_source_space(
    subject,
    subjects_dir=subjects_dir,
    sphere=sphere,
    sphere_units="m",
    add_interpolator=False,
)  # just for speed!
print(vol_src)

mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

To compute a volume based source space defined with a grid of candidate dipoles inside the brain (requires the BEM surfaces) you can use the following.

surface = subjects_dir / subject / "bem" / "inner_skull.surf"
vol_src = mne.setup_volume_source_space(
    subject, subjects_dir=subjects_dir, surface=surface, add_interpolator=False
)  # Just for speed!
print(vol_src)

mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

Note

Some sources may appear to be outside the BEM inner skull contour. This is because the slices are decimated for plotting here. Each slice in the figure actually represents several MRI slices, but only the MRI voxels and BEM boundaries for a single (midpoint of the given slice range) slice are shown, whereas the source space points plotted on that midpoint slice consist of all points for which that slice (out of all slices shown) was the closest.

Now let’s see how to view all sources in 3D.

fig = mne.viz.plot_alignment(
    subject=subject,
    subjects_dir=subjects_dir,
    surfaces="white",
    coord_frame="mri",
    src=src,
)
mne.viz.set_3d_view(
    fig,
    azimuth=173.78,
    elevation=101.75,
    distance=0.30,
    focalpoint=(-0.03, -0.01, 0.03),
)

Compute forward solution#

We can now compute the forward solution. To reduce computation we’ll just compute a single layer BEM (just inner skull) that can then be used for MEG (not EEG). We specify if we want a one-layer or a three-layer BEM using the conductivity parameter. The BEM solution requires a BEM model which describes the geometry of the head the conductivities of the different tissues.

conductivity = (0.3,)  # for single layer
# conductivity = (0.3, 0.006, 0.3)  # for three layers
model = mne.make_bem_model(
    subject="sample", ico=4, conductivity=conductivity, subjects_dir=subjects_dir
)
bem = mne.make_bem_solution(model)

Note that the BEM does not involve any use of the trans file. The BEM only depends on the head geometry and conductivities. It is therefore independent from the MEG data and the head position.

Let’s now compute the forward operator, commonly referred to as the gain or leadfield matrix. See mne.make_forward_solution() for details on the meaning of each parameter.

fwd = mne.make_forward_solution(
    raw_fname,
    trans=trans,
    src=src,
    bem=bem,
    meg=True,
    eeg=False,
    mindist=5.0,
    n_jobs=None,
    verbose=True,
)
print(fwd)

Warning

Forward computation can remove vertices that are too close to (or outside) the inner skull surface. For example, here we have gone from 516 to 474 vertices in use. For many functions, such as mne.compute_source_morph(), it is important to pass fwd['src'] or inv['src'] so that this removal is adequately accounted for.

print(f"Before: {src}")
print(f'After:  {fwd["src"]}')

We can explore the content of fwd to access the numpy array that contains the gain matrix.

leadfield = fwd["sol"]["data"]
print(f"Leadfield size : {leadfield.shape[0]} sensors x {leadfield.shape[1]} dipoles")

To extract the numpy array containing the forward operator corresponding to the source space fwd['src'] with cortical orientation constraint we can use the following:

fwd_fixed = mne.convert_forward_solution(
    fwd, surf_ori=True, force_fixed=True, use_cps=True
)
leadfield = fwd_fixed["sol"]["data"]
print(f"Leadfield size : {leadfield.shape[0]} sensors x {leadfield.shape[1]} dipoles")

This is equivalent to the following code that explicitly applies the forward operator to a source estimate composed of the identity operator (which we omit here because it uses a lot of memory):

>>> import numpy as np
>>> n_dipoles = leadfield.shape[1]
>>> vertices = [src_hemi['vertno'] for src_hemi in fwd_fixed['src']]
>>> stc = mne.SourceEstimate(1e-9 * np.eye(n_dipoles), vertices)
>>> leadfield = mne.apply_forward(fwd_fixed, stc, info).data / 1e-9

To save to disk a forward solution you can use mne.write_forward_solution() and to read it back from disk mne.read_forward_solution(). Don’t forget that FIF files containing forward solution should end with -fwd.fif.

To get a fixed-orientation forward solution, use mne.convert_forward_solution() to convert the free-orientation solution to (surface-oriented) fixed orientation.

Exercise#

By looking at Display sensitivity maps for EEG and MEG sensors plot the sensitivity maps for EEG and compare it with the MEG, can you justify the claims that:

  • MEG is not sensitive to radial sources

  • EEG is more sensitive to deep sources

How will the MEG sensitivity maps and histograms change if you use a free instead if a fixed/surface oriented orientation?

Try this changing the mode parameter in mne.sensitivity_map() accordingly. Why don’t we see any dipoles on the gyri?

Estimated memory usage: 0 MB

Gallery generated by Sphinx-Gallery