Plotting whitened data#

This tutorial demonstrates how to plot whitened evoked data.

Data are whitened for many processes, including dipole fitting, source localization and some decoding algorithms. Viewing whitened data thus gives a different perspective on the data that these algorithms operate on.

Let’s start by loading some data and computing a signal (spatial) covariance that we’ll consider to be noise.

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import mne
from mne.datasets import sample

Raw data with whitening#

Note

In the mne.io.Raw.plot() with noise_cov supplied, you can press they “w” key to turn whitening on and off.

data_path = sample.data_path()
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_filt-0-40_raw.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)

events = mne.find_events(raw, stim_channel="STI 014")
event_id = {
    "auditory/left": 1,
    "auditory/right": 2,
    "visual/left": 3,
    "visual/right": 4,
    "smiley": 5,
    "button": 32,
}
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
epochs = mne.Epochs(raw, events, event_id=event_id, reject=reject)

# baseline noise cov, not a lot of samples
noise_cov = mne.compute_covariance(
    epochs, tmax=0.0, method="shrunk", rank=None, verbose="error"
)

# butterfly mode shows the differences most clearly
raw.plot(events=events, butterfly=True)
raw.plot(noise_cov=noise_cov, events=events, butterfly=True)

Epochs with whitening#

epochs.plot(events=True)
epochs.plot(noise_cov=noise_cov, events=True)

Evoked data with whitening#

evoked = epochs.average()
evoked.plot(time_unit="s")
evoked.plot(noise_cov=noise_cov, time_unit="s")

Evoked data with scaled whitening#

The mne.Evoked.plot_white() function takes an additional step of scaling the whitened plots to show how well the assumption of Gaussian noise is satisfied by the data:

evoked.plot_white(noise_cov=noise_cov, time_unit="s")

Topographic plot with whitening#

evoked.comment = "All trials"
evoked.plot_topo(title="Evoked data")
evoked.plot_topo(noise_cov=noise_cov, title="Whitened evoked data")

Estimated memory usage: 0 MB

Gallery generated by Sphinx-Gallery