Note
Go to the end to download the full example code.
Compare simulated and estimated source activity#
This example illustrates how to compare the simulated and estimated source time courses (STC) by computing different metrics. Simulated source is a cortical region or dipole. It is meant to be a brief introduction and only highlights the simplest use case.
# Author: Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import mne
from mne.datasets import sample
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.simulation.metrics import (
cosine_score,
f1_score,
peak_position_error,
precision_score,
recall_score,
region_localization_error,
spatial_deviation_error,
)
random_state = 42 # set random state to make this example deterministic
# Import sample data
data_path = sample.data_path()
subjects_dir = data_path / "subjects"
subject = "sample"
evoked_fname = data_path / "MEG" / subject / "sample_audvis-ave.fif"
info = mne.io.read_info(evoked_fname)
tstep = 1.0 / info["sfreq"]
# Import forward operator and source space
fwd_fname = data_path / "MEG" / subject / "sample_audvis-meg-eeg-oct-6-fwd.fif"
fwd = mne.read_forward_solution(fwd_fname)
src = fwd["src"]
# To select source, we use the caudal middle frontal to grow
# a region of interest.
selected_label = mne.read_labels_from_annot(
subject, regexp="caudalmiddlefrontal-lh", subjects_dir=subjects_dir
)[0]
In this example we simulate two types of cortical sources: a region and a dipole sources. We will test corresponding performance metrics.
Define main parameters of sources#
First we define both region and dipole sources in terms of Where?, What? and When?.
# WHERE?
# Region
location = "center" # Use the center of the label as a seed.
extent = 20.0 # Extent in mm of the region.
label_region = mne.label.select_sources(
subject,
selected_label,
location=location,
extent=extent,
subjects_dir=subjects_dir,
random_state=random_state,
)
# Dipole
location = 1915 # Use the index of the vertex as a seed
extent = 0.0 # One dipole source
label_dipole = mne.label.select_sources(
subject,
selected_label,
location=location,
extent=extent,
subjects_dir=subjects_dir,
random_state=random_state,
)
# WHAT?
# Define the time course of the activity
source_time_series = np.sin(2.0 * np.pi * 18.0 * np.arange(100) * tstep) * 10e-9
# WHEN?
# Define when the activity occurs using events.
n_events = 50
events = np.zeros((n_events, 3), int)
events[:, 0] = 200 * np.arange(n_events) # Events sample.
events[:, 2] = 1 # All events have the sample id.
Create simulated source activity#
Here, SourceSimulator
is used.
# Region
source_simulator_region = mne.simulation.SourceSimulator(src, tstep=tstep)
source_simulator_region.add_data(label_region, source_time_series, events)
# Dipole
source_simulator_dipole = mne.simulation.SourceSimulator(src, tstep=tstep)
source_simulator_dipole.add_data(label_dipole, source_time_series, events)
Simulate raw data#
Project the source time series to sensor space with multivariate Gaussian noise obtained from the noise covariance from the sample data.
# Region
raw_region = mne.simulation.simulate_raw(info, source_simulator_region, forward=fwd)
raw_region = raw_region.pick(picks=["eeg", "stim"], exclude="bads")
cov = mne.make_ad_hoc_cov(raw_region.info)
mne.simulation.add_noise(
raw_region, cov, iir_filter=[0.2, -0.2, 0.04], random_state=random_state
)
# Dipole
raw_dipole = mne.simulation.simulate_raw(info, source_simulator_dipole, forward=fwd)
raw_dipole = raw_dipole.pick(picks=["eeg", "stim"], exclude="bads")
cov = mne.make_ad_hoc_cov(raw_dipole.info)
mne.simulation.add_noise(
raw_dipole, cov, iir_filter=[0.2, -0.2, 0.04], random_state=random_state
)
Compute evoked from raw data#
Averaging epochs corresponding to events.
# Region
events = mne.find_events(raw_region, initial_event=True)
tmax = (len(source_time_series) - 1) * tstep
epochs = mne.Epochs(raw_region, events, 1, tmin=0, tmax=tmax, baseline=None)
evoked_region = epochs.average()
# Dipole
events = mne.find_events(raw_dipole, initial_event=True)
tmax = (len(source_time_series) - 1) * tstep
epochs = mne.Epochs(raw_dipole, events, 1, tmin=0, tmax=tmax, baseline=None)
evoked_dipole = epochs.average()
Create true stcs corresponding to evoked#
Before we computed stcs corresponding to raw data. To be able to compare it with the reconstruction, based on the evoked, true stc should have the same number of time samples.
# Region
stc_true_region = source_simulator_region.get_stc(
start_sample=0, stop_sample=len(source_time_series)
)
# Dipole
stc_true_dipole = source_simulator_dipole.get_stc(
start_sample=0, stop_sample=len(source_time_series)
)
Reconstruct simulated sources#
Compute inverse solution using sLORETA.
# Region
snr = 30.0
inv_method = "sLORETA"
lambda2 = 1.0 / snr**2
inverse_operator = make_inverse_operator(
evoked_region.info, fwd, cov, loose="auto", depth=0.8, fixed=True
)
stc_est_region = apply_inverse(
evoked_region, inverse_operator, lambda2, inv_method, pick_ori=None
)
# Dipole
snr = 3.0
inv_method = "sLORETA"
lambda2 = 1.0 / snr**2
inverse_operator = make_inverse_operator(
evoked_dipole.info, fwd, cov, loose="auto", depth=0.8, fixed=True
)
stc_est_dipole = apply_inverse(
evoked_dipole, inverse_operator, lambda2, inv_method, pick_ori=None
)
Compute performance scores for different source amplitude thresholds#
thresholds = [10, 30, 50, 70, 80, 90, 95, 99]
For region#
# create a set of scorers
scorers = {
"RLE": partial(region_localization_error, src=src),
"Precision": precision_score,
"Recall": recall_score,
"F1 score": f1_score,
}
# compute results
region_results = {}
for name, scorer in scorers.items():
region_results[name] = [
scorer(stc_true_region, stc_est_region, threshold=f"{thx}%", per_sample=False)
for thx in thresholds
]
# Plot the results
f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex="col", layout="constrained")
for ax, (title, results) in zip([ax1, ax2, ax3, ax4], region_results.items()):
ax.plot(thresholds, results, ".-")
ax.set(title=title, ylabel="score", xlabel="Threshold", xticks=thresholds)
f.suptitle("Performance scores per threshold") # Add Super title
ax1.ticklabel_format(axis="y", style="sci", scilimits=(0, 1)) # tweak RLE
# Cosine score with respect to time
f, ax1 = plt.subplots(layout="constrained")
ax1.plot(stc_true_region.times, cosine_score(stc_true_region, stc_est_region))
ax1.set(title="Cosine score", xlabel="Time", ylabel="Score")
For Dipoles#
# create a set of scorers
scorers = {
"Peak Position Error": peak_position_error,
"Spatial Deviation Error": spatial_deviation_error,
}
# compute results
dipole_results = {}
for name, scorer in scorers.items():
dipole_results[name] = [
scorer(
stc_true_dipole,
stc_est_dipole,
src=src,
threshold=f"{thx}%",
per_sample=False,
)
for thx in thresholds
]
# Plot the results
for name, results in dipole_results.items():
f, ax1 = plt.subplots(layout="constrained")
ax1.plot(thresholds, 100 * np.array(results), ".-")
ax1.set(title=name, ylabel="Error (cm)", xlabel="Threshold", xticks=thresholds)
Estimated memory usage: 0 MB