Note
Go to the end to download the full example code.
Shifting time-scale in evoked data#
# Author: Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
meg_path = data_path / "MEG" / "sample"
fname = meg_path / "sample_audvis-ave.fif"
# Reading evoked data
condition = "Left Auditory"
evoked = mne.read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True)
picks = ["MEG 2332"]
# Create subplots
f, (ax1, ax2, ax3) = plt.subplots(3)
evoked.plot(
exclude=[],
picks=picks,
axes=ax1,
titles=dict(grad="Before time shifting"),
time_unit="s",
)
# Apply relative time-shift of 500 ms
evoked.shift_time(0.5, relative=True)
evoked.plot(
exclude=[],
picks=picks,
axes=ax2,
titles=dict(grad="Relative shift: 500 ms"),
time_unit="s",
)
# Apply absolute time-shift of 500 ms
evoked.shift_time(0.5, relative=False)
evoked.plot(
exclude=[],
picks=picks,
axes=ax3,
titles=dict(grad="Absolute shift: 500 ms"),
time_unit="s",
)
Estimated memory usage: 0 MB