Maxwell filter data with movement compensation#

Demonstrate movement compensation on simulated data. The simulated data contains bilateral activation of auditory cortices, repeated over 14 different head rotations (head center held fixed). See the following for details:

# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import mne
from mne.preprocessing import maxwell_filter

print(__doc__)

data_path = mne.datasets.misc.data_path(verbose=True) / "movement"

head_pos = mne.chpi.read_head_pos(data_path / "simulated_quats.pos")
raw = mne.io.read_raw_fif(data_path / "simulated_movement_raw.fif")
raw_stat = mne.io.read_raw_fif(data_path / "simulated_stationary_raw.fif")

Visualize the “subject” head movements. By providing the measurement information, the distance to the nearest sensor in each direction (e.g., left/right for the X direction, forward/backward for Y) can be shown in blue, and the destination (if given) shown in red.

mne.viz.plot_head_positions(
    head_pos, mode="traces", destination=raw.info["dev_head_t"], info=raw.info
)

This can also be visualized using a quiver.

mne.viz.plot_head_positions(
    head_pos, mode="field", destination=raw.info["dev_head_t"], info=raw.info
)

Process our simulated raw data (taking into account head movements).

# extract our resulting events
events = mne.find_events(raw, stim_channel="STI 014")
events[:, 2] = 1
raw.plot(events=events)

topo_kwargs = dict(times=[0, 0.1, 0.2], ch_type="mag", vlim=(-500, 500))

First, take the average of stationary data (bilateral auditory patterns).

evoked_stat = mne.Epochs(raw_stat, events, 1, -0.2, 0.8).average()
fig = evoked_stat.plot_topomap(**topo_kwargs)
fig.suptitle("Stationary")

Second, take a naive average, which averages across epochs that have been simulated to have different head positions and orientations, thereby spatially smearing the activity.

epochs = mne.Epochs(raw, events, 1, -0.2, 0.8)
evoked = epochs.average()
fig = evoked.plot_topomap(**topo_kwargs)
fig.suptitle("Moving: naive average")

Third, use raw movement compensation (restores pattern).

raw_sss = maxwell_filter(raw, head_pos=head_pos)
evoked_raw_mc = mne.Epochs(raw_sss, events, 1, -0.2, 0.8).average()
fig = evoked_raw_mc.plot_topomap(**topo_kwargs)
fig.suptitle("Moving: movement compensated (raw)")

Fourth, use evoked movement compensation. For these data, which contain very large rotations, it does not as cleanly restore the pattern.

evoked_evo_mc = mne.epochs.average_movements(epochs, head_pos=head_pos)
fig = evoked_evo_mc.plot_topomap(**topo_kwargs)
fig.suptitle("Moving: movement compensated (evoked)")

Estimated memory usage: 0 MB

Gallery generated by Sphinx-Gallery