Note
Go to the end to download the full example code.
Plotting the full vector-valued MNE solution#
The source space that is used for the inverse computation defines a set of
dipoles, distributed across the cortex. When visualizing a source estimate, it
is sometimes useful to show the dipole directions in addition to their
estimated magnitude. This can be accomplished by computing a
mne.VectorSourceEstimate
and plotting it with
stc.plot
, which uses
plot_vector_source_estimates()
under the hood rather than
plot_source_estimates()
.
It can also be instructive to visualize the actual dipole/activation locations
in 3D space in a glass brain, as opposed to activations imposed on an inflated
surface (as typically done in mne.SourceEstimate.plot()
), as it allows
you to get a better sense of the underlying source geometry.
# Author: Marijn van Vliet <w.m.vanvliet@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import mne
from mne.datasets import sample
from mne.minimum_norm import apply_inverse, read_inverse_operator
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path / "subjects"
smoothing_steps = 7
# Read evoked data
meg_path = data_path / "MEG" / "sample"
fname_evoked = meg_path / "sample_audvis-ave.fif"
evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
# Read inverse solution
fname_inv = meg_path / "sample_audvis-meg-oct-6-meg-inv.fif"
inv = read_inverse_operator(fname_inv)
# Apply inverse solution, set pick_ori='vector' to obtain a
# :class:`mne.VectorSourceEstimate` object
snr = 3.0
lambda2 = 1.0 / snr**2
stc = apply_inverse(evoked, inv, lambda2, "dSPM", pick_ori="vector")
# Use peak getter to move visualization to the time point of the peak magnitude
_, peak_time = stc.magnitude().get_peak(hemi="lh")
Plot the source estimate:
brain = stc.plot(
initial_time=peak_time,
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=smoothing_steps,
)
# You can save a brain movie with:
# brain.save_movie(time_dilation=20, tmin=0.05, tmax=0.16, framerate=10,
# interpolation='linear', time_viewer=True)
Plot the activation in the direction of maximal power for this data:
stc_max, directions = stc.project("pca", src=inv["src"])
# These directions must by design be close to the normals because this
# inverse was computed with loose=0.2
print(
"Absolute cosine similarity between source normals and directions: "
f'{np.abs(np.sum(directions * inv["source_nn"][2::3], axis=-1)).mean()}'
)
brain_max = stc_max.plot(
initial_time=peak_time,
hemi="lh",
subjects_dir=subjects_dir,
time_label="Max power",
smoothing_steps=smoothing_steps,
)
The normal is very similar:
brain_normal = stc.project("normal", inv["src"])[0].plot(
initial_time=peak_time,
hemi="lh",
subjects_dir=subjects_dir,
time_label="Normal",
smoothing_steps=smoothing_steps,
)
You can also do this with a fixed-orientation inverse. It looks a lot like
the result above because the loose=0.2
orientation constraint keeps
sources close to fixed orientation:
fname_inv_fixed = meg_path / "sample_audvis-meg-oct-6-meg-fixed-inv.fif"
inv_fixed = read_inverse_operator(fname_inv_fixed)
stc_fixed = apply_inverse(evoked, inv_fixed, lambda2, "dSPM", pick_ori="vector")
brain_fixed = stc_fixed.plot(
initial_time=peak_time,
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=smoothing_steps,
)
Estimated memory usage: 0 MB