Note
Go to the end to download the full example code.
Extracting time course from source_estimate object#
Load a SourceEstimate object from stc files and extract the time course of activation in individual labels, as well as in a complex label formed through merging two labels.
# Author: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path / "subjects"
meg_path = data_path / "MEG" / "sample"
# load the stc
stc = mne.read_source_estimate(meg_path / "sample_audvis-meg")
# load the labels
aud_lh = mne.read_label(meg_path / "labels" / "Aud-lh.label")
aud_rh = mne.read_label(meg_path / "labels" / "Aud-rh.label")
# extract the time course for different labels from the stc
stc_lh = stc.in_label(aud_lh)
stc_rh = stc.in_label(aud_rh)
stc_bh = stc.in_label(aud_lh + aud_rh)
# calculate center of mass and transform to mni coordinates
vtx, _, t_lh = stc_lh.center_of_mass("sample", subjects_dir=subjects_dir)
mni_lh = mne.vertex_to_mni(vtx, 0, "sample", subjects_dir=subjects_dir)[0]
vtx, _, t_rh = stc_rh.center_of_mass("sample", subjects_dir=subjects_dir)
mni_rh = mne.vertex_to_mni(vtx, 1, "sample", subjects_dir=subjects_dir)[0]
# plot the activation
plt.figure()
plt.axes([0.1, 0.275, 0.85, 0.625])
hl = plt.plot(stc.times, stc_lh.data.mean(0), "b")[0]
hr = plt.plot(stc.times, stc_rh.data.mean(0), "g")[0]
hb = plt.plot(stc.times, stc_bh.data.mean(0), "r")[0]
plt.xlabel("Time (s)")
plt.ylabel("Source amplitude (dSPM)")
plt.xlim(stc.times[0], stc.times[-1])
# add a legend including center-of-mass mni coordinates to the plot
labels = [
f"LH: center of mass = {mni_lh.round(2)}",
f"RH: center of mass = {mni_rh.round(2)}",
"Combined LH & RH",
]
plt.figlegend([hl, hr, hb], labels, loc="lower center")
plt.suptitle("Average activation in auditory cortex labels", fontsize=20)
plt.show()
Estimated memory usage: 0 MB