Optically pumped magnetometer (OPM) data#

In this dataset, electrical median nerve stimulation was delivered to the left wrist of the subject. Somatosensory evoked fields were measured using nine QuSpin SERF OPMs placed over the right-hand side somatomotor area. Here we demonstrate how to localize these custom OPM data in MNE.

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.


import numpy as np

import mne

data_path = mne.datasets.opm.data_path()
subject = "OPM_sample"
subjects_dir = data_path / "subjects"
raw_fname = data_path / "MEG" / "OPM" / "OPM_SEF_raw.fif"
bem_fname = subjects_dir / subject / "bem" / f"{subject}-5120-5120-5120-bem-sol.fif"
fwd_fname = data_path / "MEG" / "OPM" / "OPM_sample-fwd.fif"
coil_def_fname = data_path / "MEG" / "OPM" / "coil_def.dat"

Prepare data for localization#

First we filter and epoch the data:

raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.filter(None, 90, h_trans_bandwidth=10.0)
raw.notch_filter(50.0, notch_widths=1)


# Set epoch rejection threshold a bit larger than for SQUIDs
reject = dict(mag=2e-10)
tmin, tmax = -0.5, 1

# Find median nerve stimulator trigger
event_id = dict(Median=257)
events = mne.find_events(raw, stim_channel="STI101", mask=257, mask_type="and")
picks = mne.pick_types(raw.info, meg=True, eeg=False)
# We use verbose='error' to suppress warning about decimation causing aliasing,
# ideally we would low-pass and then decimate instead
epochs = mne.Epochs(
    raw,
    events,
    event_id,
    tmin,
    tmax,
    verbose="error",
    reject=reject,
    picks=picks,
    proj=False,
    decim=10,
    preload=True,
)
evoked = epochs.average()
evoked.plot()
cov = mne.compute_covariance(epochs, tmax=0.0)
del epochs, raw

Examine our coordinate alignment for source localization and compute a forward operator:

Note

The Head<->MRI transform is an identity matrix, as the co-registration method used equates the two coordinate systems. This mis-defines the head coordinate system (which should be based on the LPA, Nasion, and RPA) but should be fine for these analyses.

bem = mne.read_bem_solution(bem_fname)
trans = mne.transforms.Transform("head", "mri")  # identity transformation

# To compute the forward solution, we must
# provide our temporary/custom coil definitions, which can be done as::
#
# with mne.use_coil_def(coil_def_fname):
#     fwd = mne.make_forward_solution(
#         raw.info, trans, src, bem, eeg=False, mindist=5.0,
#         n_jobs=None, verbose=True)

fwd = mne.read_forward_solution(fwd_fname)
# use fixed orientation here just to save memory later
mne.convert_forward_solution(fwd, force_fixed=True, copy=False)

with mne.use_coil_def(coil_def_fname):
    fig = mne.viz.plot_alignment(
        evoked.info,
        trans=trans,
        subject=subject,
        subjects_dir=subjects_dir,
        surfaces=("head", "pial"),
        bem=bem,
    )

mne.viz.set_3d_view(
    figure=fig, azimuth=45, elevation=60, distance=0.4, focalpoint=(0.02, 0, 0.04)
)

Perform dipole fitting#

# Fit dipoles on a subset of time points
with mne.use_coil_def(coil_def_fname):
    dip_opm, _ = mne.fit_dipole(
        evoked.copy().crop(0.040, 0.080), cov, bem, trans, verbose=True
    )
idx = np.argmax(dip_opm.gof)
print(
    f"Best dipole at t={1000 * dip_opm.times[idx]:0.1f} ms with "
    f"{dip_opm.gof[idx]:0.1f}% GOF"
)

# Plot N20m dipole as an example
dip_opm.plot_locations(trans, subject, subjects_dir, mode="orthoview", idx=idx)

Perform minimum-norm localization#

Due to the small number of sensors, there will be some leakage of activity to areas with low/no sensitivity. Constraining the source space to areas we are sensitive to might be a good idea.

inverse_operator = mne.minimum_norm.make_inverse_operator(
    evoked.info, fwd, cov, loose=0.0, depth=None
)
del fwd, cov

method = "MNE"
snr = 3.0
lambda2 = 1.0 / snr**2
stc = mne.minimum_norm.apply_inverse(
    evoked, inverse_operator, lambda2, method=method, pick_ori=None, verbose=True
)

# Plot source estimate at time of best dipole fit
brain = stc.plot(
    hemi="rh",
    views="lat",
    subjects_dir=subjects_dir,
    initial_time=dip_opm.times[idx],
    clim=dict(kind="percent", lims=[99, 99.9, 99.99]),
    size=(400, 300),
    background="w",
)

Estimated memory usage: 0 MB

Gallery generated by Sphinx-Gallery