Source code for mlflow.gemini

"""
The ``mlflow.gemini`` module provides an API for tracing the interaction with Gemini models.
"""

from mlflow.gemini.autolog import (
    patched_class_call,
    patched_module_call,
)
from mlflow.utils.annotations import experimental
from mlflow.utils.autologging_utils import autologging_integration, safe_patch

FLAVOR_NAME = "gemini"


[docs]@experimental @autologging_integration(FLAVOR_NAME) def autolog( log_traces: bool = True, disable: bool = False, silent: bool = False, ): """ Enables (or disables) and configures autologging from Gemini to MLflow. Currently, both legacy SDK google-generativeai and new SDK google-genai are supported. Only synchronous calls are supported. Asynchnorous APIs and streaming are not recorded. Args: log_traces: If ``True``, traces are logged for Gemini models. If ``False``, no traces are collected during inference. Default to ``True``. disable: If ``True``, disables the Gemini autologging. Default to ``False``. silent: If ``True``, suppress all event logs and warnings from MLflow during Gemini autologging. If ``False``, show all events and warnings. """ try: from google import generativeai for method in ["generate_content", "count_tokens"]: safe_patch( FLAVOR_NAME, generativeai.GenerativeModel, method, patched_class_call, ) safe_patch( FLAVOR_NAME, generativeai.ChatSession, "send_message", patched_class_call, ) safe_patch( FLAVOR_NAME, generativeai, "embed_content", patched_module_call, ) except ImportError: pass try: from google import genai # Since the genai SDK calls "_generate_content" iteratively within "generate_content", # we need to patch both "generate_content" and "_generate_content". for method in ["generate_content", "_generate_content", "count_tokens", "embed_content"]: safe_patch( FLAVOR_NAME, genai.models.Models, method, patched_class_call, ) safe_patch( FLAVOR_NAME, genai.chats.Chat, "send_message", patched_class_call, ) except ImportError: pass